Pseudo-Zernike-based multi-pass automatic target recognition from multi-channel synthetic aperture radar

نویسندگان

  • Carmine Clemente
  • Luca Pallotta
  • Ian Proudler
  • Antonio De Maio
  • John J. Soraghan
  • Alfonso Farina
چکیده

The capability to exploit multiple sources of information is of fundamental importance in a battlefield scenario. Information obtained from different sources, and separated in space and time, provides the opportunity to exploit diversities to mitigate uncertainty. In this study, the authors address the problem of automatic target recognition (ATR) from synthetic aperture radar platforms. The author’s approach exploits both channel (e.g. polarisation) and spatial diversity to obtain suitable information for such a critical task. In particular they use the pseudo-Zernike moments (pZm) to extract features representing commercial vehicles to perform target identification. The proposed approach exploits diversities and invariant properties of pZm leading to high confidence ATR, with limited computational complexity and data transfer requirements. The effectiveness of the proposed method is demonstrated using real data from the Gotcha dataset, in different operational configurations and data source availability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-Zernike Based Multi-Pass Automatic Target Recognition From Multi-Channel SAR

The capability to exploit multiple sources of information is of fundamental importance in a battlefield scenario. Information obtained from different sources, and separated in space and time, provide the opportunity to exploit diversities in order to mitigate uncertainty. For the specific challenge of Automatic Target Recognition (ATR) from radar platforms, both channel (e.g. polarization) and ...

متن کامل

روشی جدید در بازشناسایی خودکار اهداف متحرک زمینی با استفاده از رادارهای مراقبت زمینی پالس داپلر

A new automatic target recognition algorithm to recognize and distinguish three classes of targets: personnel, wheeled vehicles and animals, is proposed using a low-resolution ground surveillance pulse Doppler radar. The Chirplet transformation, a time frequency signal processing technique, is implemented in this paper. The parameterized RADAR signal is then analyzed by the Zernike Moments (ZM)...

متن کامل

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Using Laplace Distribution

Speckle is a granular noise-like phenomenon which appears in Synthetic Aperture Radar (SAR) images due to coherent properties of SAR systems. The presence of speckle complicates both human and automatic analysis of SAR images. As a result, speckle reduction is an important preprocessing step for many SAR remote sensing applications. Speckle reduction can be made through multi-looking during the...

متن کامل

General Linear Chirplet Transform and Radar Target Classification

In this paper, we design an attractivealgorithm aiming to classify moving targets includinghuman, animal, vehicle and drone, at groundsurveillance radar systems. The non-stationary reflectedsignal of the targets is represented with a novelmathematical framework based on behavior of thesignal components in reality. We further propose usingthe generalized linear chirp transform for the analysisst...

متن کامل

Target Discrimination Based on Zernike Moments in High-Resolution SAR Imagery

Target discrimination is the key step of automatic target detection (ATR) in synthetic aperture radar (SAR) images. In this paper, a new algorithm for target discrimination in high resolution SAR image is presented by utilizing Zernike moments as descriptors of shape and intensity characteristics which have linear transformation invariance properties. The input regions of interest (ROIs) are se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014